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Large Language Models (LLMs) are increasingly becoming fundamental in supporting software developers in coding tasks.
The massive datasets used for training LLMs are often collected automatically, leading to the introduction of data smells.
Previous work addressed this issue by using quality filters to handle some specific smells. Still, the literature lacks a systematic
catalog of the data smells for coding tasks currently known. This paper presents a Systematic Literature Review (SLR) focused
on articles that introduce LLMs for coding tasks. We first extracted the quality filters adopted for training and testing such
LLMs, inferred the root problem behind their adoption (data smells for coding tasks), and defined a taxonomy of such smells.
Our results highlight discrepancies in the adoption of quality filters between pre-training and fine-tuning stages and across
different coding tasks, shedding light on areas for improvement in LLM-based software development support.

CCS Concepts: • Software and its engineering → Software verification and validation; Extra-functional properties.

Additional Key Words and Phrases: LLMs for coding tasks; data smells; data quality; Systematic Literature Review

1 INTRODUCTION
Programming languages are powerful and flexible tools that allow developers to express the same instructions in
plenty of different ways. In practice, however, programs written by developers present repetitive patterns that can
be captured and predicted by statistical language models [23]. Large Language Models (LLMs) are an evolution of
statistical language models that recently emerged as a powerful tool to capture, predict, and use such patterns
to support software developers in several ways. Specifically, the use of LLMs is becoming increasingly popular
for tackling coding tasks [36], i.e., software engineering-related tasks in which the source code is involved. An
example of such tasks is bug fixing: Given a buggy version of a code snippet (e.g., a method), the task consists of
modifying it to remove the issue.

Modern LLMs have been enabled by the introduction of the Transformer architecture [48], which is based on
Deep Neural Networks (DNNs) with millions/billions of parameters. Tuning all such parameters requires a huge
amount of training data. One of the biggest advantages of Transformers is that they allow for the adoption of
transfer learning. Their training is divided into steps: The pre-training allows to teach the language to the model
independently from the task at hand, while a subsequent fine-tuning step allows to specialize the model on a
downstream task.

Given the size of the data required to both pre-train and fine-tune such models, the datasets adopted are rarely
curated and generally collected in a fully automated way. For example, CodeSearchNet [26] is a dataset that
contains 6 million functions, with and without documentation, collected from open-source code of 6 different
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// Code instance
@Override
public Object eGet(int featureID , boolean resolve , boolean coreType) {

switch (featureID) {
case SimpleExpressionsPackage.COMPARISON__LEFT:

return getLeft ();
case SimpleExpressionsPackage.COMPARISON__OPERATOR:

return getOperator ();
case SimpleExpressionsPackage.COMPARISON__RIGHT:

return getRight ();
}
return super.eGet(featureID , resolve , coreType);

}

// Comment
<!-- begin -user -doc -->
<!-- end -user -doc -->
@generated

Fig. 1. Low quality instance from CodeSearchNet [26].

programming languages (i.e., Go, Java, JavaScript, PHP, Python, and Ruby). CodeSearchNet has been adopted to
pre-train models very popular in the SE community, such as T5 [36], CodeT5 [51], CodeBERT [19], and CodeT5+
[50]. Let us consider the example in Fig. 1. We can observe a pair code-comment present in the CodeSearchNet
dataset, in which the comment is clearly inappropriate both to document the code and to represent the ground
truth for a code-summarization task.

Previous work provided evidence that shows that datasets used for both pre-training and fine-tuning LLMs
contain problematic instances like the previously mentioned one [124], [45]. Training a model on similar instances
might be detrimental for two reasons. First, it might introduce issues in the model. Second, in the best scenario, it
might be useless and, thus, result in a waste of resources (time and energy). Enhancing data quality by removing
and/or updating such instances leads to improved model effectiveness [124]. For this reason, most previous
studies that adopted LLMs used several strategies (quality filters) to clean up the datasets they adopted. While the
use of some quality filters is well-established in the literature (e.g., removal of duplicates), researchers are not
always aware of all the less popular options, which are not necessarily less important.

Besides, the quality filters adopted by researchers are only specific solutions to broader problems — what Foidl
et al. defined as data smells [20]. While catalogs of data smells have been defined in previous work [20, 42], they
are generic and they mostly focused on tabular data. To the best of our knowledge, no previous work tried to
define a catalog of data smells for coding tasks in the context of LLMs.

In this work, we aim to fill this gap by relying on the literature in the Software Engineering research field.
We present a Systematic Literature Review (SLR) in which we analyze articles in which researchers used LLMs
to tackle coding tasks. We specifically focused on studies in which researchers used at least a quality filter to
improve the quality of the dataset(s) they adopted.

After performing a query on the most relevant digital libraries, we collected a set of ∼11k papers, which became
81 after applying filters based on our inclusion and exclusion criteria. Then, through snowballing, we enlarged
such a set with 26 additional papers, collecting a total of 107 papers. We manually extracted all the quality filters
used in them and derived the root issue that they aimed at solving – i.e., data smells for coding tasks.

The main contribution of our work is a taxonomy of 71 data smells for coding tasks, with the solutions (i.e.,
quality filters) researchers previously adopted for them. We also performed a more in-depth analysis on the
diffusion of the adoption of quality filters in both pre-training and fine-tuning, and in specific downstream coding
tasks. We observed that some quality filters (e.g., the ones related to code and comments quality) are more often
adopted for fine-tuning than for pre-training, and that they are currently ignored for some tasks (e.g., automated
program repair).
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2 BACKGROUND AND RELATED WORK
In this section, we present the concept of data smell and the recent studies on this topic.

2.1 Data Smells
Data smells have been first introduced by Foidl et al. [20] as data quality issues that may lead to future problems.
The authors introduced a catalog of 36 data smells and divided them into three categories: (i) Believability Smells
(e.g., the presence of dummy values to represent missing values), (ii) Understandability Smells (e.g., encoding
an integer as a string), and (iii) Consistency Smells (e.g., use on inconsistent abbreviations). Recupito et al. [42]
extended such a catalog by adding 12 data smells with three additional categories: (i) Redundant Value Smells
(e.g., features having a linear relationship), (ii) Distribution Smells (e.g., values different from the distribution),
and (iii) Miscellaneous Smells (e.g., features that are likely to introduce bias and unfairness).

Existing catalogs only consider task-agnostic data smells, i.e., problems that are not dependent on the specific
downstream task on which a machine learning model is trained. In other words, such problems only represent
the intersection of the data smells that regards classes of tasks or specific tasks. In this work, we differentiate
from Foidl et al. and Recupito et al. by focusing on task-dependent data smells. Specifically, we focus on data
smells of code-related tasks.

2.2 Transformer-based Models for Code-Related Tasks
Deep learning methodologies have caused a significant paradigm shift in various research fields. The introduction
of the Transformer architecture [48] revolutionized the research and practice in NLP and Software Engineering.
Such an architecture overcomes the limits of the RNN architecture through the self-attention mechanism. On the
backbone of Transformers, models leveraging transfer learning have been introduced [18, 39]. Such a mechanism
consists of (i) a pre-training phase, in which the model learns through a self-supervised task and (ii) a fine-tuning
phase, in which the acquired knowledge is leveraged to boost performance on a downstream task through
additional training on a task-specific dataset. Pre-Trained Transformer models such as BERT [18], T5 [40],
GPT-3 [14], and GPT-4 [9] have achieved state-of-the-art results in many NLP tasks. In addition, models such
as CodeBERT [19], GraphCodeBERT [21], CodeT5 [51], and Code-Llama [119] have allowed researchers to
define state-of-the-art approaches for addressing code-related tasks. An example of code-related task previously
addressed in the literature is code summarization. Such a task aims consists in generating a natural language
description (output) of the given code snippet (input). Generally, the training set is composed of instances in the
format 〈code, description〉, which is fed to the model that learns in a supervised fashion. Another example of a
task is code completion, which consists of completing a partial coding solution written by the developer. Given an
incomplete code snippet (input), the model generates the missing code (output). Similar to other tasks, training
for code completion typically relies on a supervised approach, where the model learns from instances in the
format 〈incomplete code,missing code〉 pairs, enabling it to predict (i) the next token, (ii) the next line, or (iii) the
next block.

3 SYSTEMATIC LITERATURE REVIEW PLANNING
The main goal of our SLR is to define the issues that can affect the quality and effectiveness of Transformer-based
models for code-related tasks. We specifically focus on Transformer-based models (and, thus, indirectly on
large language models) since they allow to achieve state-of-the-art results in basically all code-related tasks
[36, 51],[66, 110, 119, 124, 129].

Our study is steered by the following research questions (RQs):

• RQ1: What are the known data smells for code-related tasks and the strategies adopted to remove them?
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Source Papers

ACM Digital Library 2,095
IEEE Xplore Digital Library 3,280
Springer Link Online Library 1,826
Scopus 4,029

Total with duplicates 11,230
Total with only SE papers and without duplicates 2,822

Table 1. Papers returned from digital libraries queries.

• RQ2:How frequent is the use of strategies to remove data smells between the two training steps of Transformers
( i.e., pre-training and fine-tuning)?

• RQ3: How frequent is the use of strategies to remove data smells among different coding task?
We followed the guidelines provided by Kitchenam et al. [30].

3.1 Study Collection
As a first step, we needed to collect a list of primary studies of interest. To do this, we relied on the following
digital libraries: ACM Digital Library [1], IEEE Xplore Digital Library [4], Springer Link Online Library [8], and
Scopus [7]. We decided not to use Google Scholar to exclude gray literature, as also done in previous work [16].
Query. To define the query, we initially considered the query used in a recent SLR with a similar aim, i.e.,

the one by Tufano et al. [130] and the one by Hou et al. [25]. We used the same keywords adopted in the
former (i.e., “pre-training” and its variations and “transfer learning”), but we also included “fine-tuning” and its
variations: We do this because we aim to select papers that mention at least one of the two steps that characterize
Transformer-based models. We used, instead, the same starting year used in the latter (which includes papers
published after 2017) because the Transformer architecture was introduced in that year [48]. Finally, similarly
to the SLR by Tufano et al. [130], we focused on venues with names related to software engineering (roughly
identified, at this stage, through the keywords “software,” “program,” and “code”). The final query we used to
select the first set of studies is the following:

full text CONTAINS (“pretrain” OR “pretrained” OR “pretraining” OR “pre-train” OR “pre-trained” OR “pre-training” OR
“finetune” OR “finetuned” OR “finetuning” OR “fine-tune” OR “fine-tuned” OR “fine-tuning” OR
“transfer learning”) AND

publication date IS FROM 01.01.2017 TO 31.07.2024 AND
publication venue CONTAINS

(“software” OR “program” OR “code”)

3.2 Inclusion and Exclusion Criteria
We defined a set of inclusion and exclusion criteria for our SLR. Such criteria are summarized in Table 2.

To ensure a high quality set of primary studies, we considered only the ones published in top SE conferences1
and journals2, i.e., the ones with CORE ranking A* - A as of 2023.3 (IC1) [53], [130]. Note that the topic under

1We considered the following conferences: ASE, EASE, ESEC/FSE, ESEM, ICPC, ICSA, ICSE, ICSME, ICST, ISSRE, ISSTA, MSR, SANER,
SEAMS.
2We considered the following journals: EMSE, IST, JSS, TSE, and TOSEM.
3http://portal.core.edu.au/
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Inclusion Criteria

IC1 The paper must be published at SE conferences or journals ranked A-A*.
IC2 The paper must present an approach based on Transformer.
IC3 The paper must present approaches to automate a code-related task.
IC4 The paper must describe a methodology for data pre-processing for at least one between pre-training and fine-

tuning.
IC5 The paper must precisely describe the pre-processing techniques used.

Exclusion Criteria

EC1 The paper is made of less than 8 pages.
EC2 The paper is not written in English.
EC3 The paper has not been peer-reviewed.
EC4 The PDF of the paper is not available.

Table 2. Inclusion and exclusion criteria.

study has been explored also in other research fields (e.g., Artificial Intelligence and Natural Language Processing).
However, we only consider SE venues because our focus is on the SE field since we want to focus on code-related
datasets. In addition, we decided to exclude papers that have not been subject to a full peer-review process yet
(EC1) and the ones shorter than 8 pages (EC3) to collect only high-standard, detailed results that documented
extensively their findings [130], [16]. Our main objective is to collect papers in which the authors trained models
for tackling code-related tasks (IC3) and applied any kind of pre-processing or quality filter to an originally defined
or ready-made dataset (IC4, IC5).

3.3 Filtering and Snowballing
Table 1 reports the results obtained from the queries to the digital libraries. We obtained a total of 11,230 results.
We excluded duplicates (e.g., present on both IEEExplore and ACM DL) and papers not published in the SE venues
we selected, leading us to 2,822 papers. Given the large number of papers left, we decided to apply an additional
filter before delving into the full-text read. One of the authors inspected the papers starting from the title and
abstract and excluded the ones clearly out of the scope of our SLR. Note that we adopted a conservative approach,
i.e., we did not exclude papers unless we were certain. This filter left us with 486 papers. Then, two of the authors
inspected the 486 remaining papers by reading the full-text and decided to include them or not based on the
inclusion/exclusion criteria. In the end, we selected 81 primary studies as a base for our SLR.

After having read the selected papers, we extracted the references and performed snowballing. In this step, we
decided to relax some inclusion and exclusion criteria. First, we ignored IC1 for such a step, i.e., we included
also papers not published in top SE venues. We did this because we noticed that some relevant contributions
have been published in venues related, for example, to AI and NLP (e.g., ICLR and NeurIPS). Note that we used
IC1 in our original search anyway because most of the papers from non-SE venues matching our query were
not relevant for our study and, thus, analyzing all of them would have required an enormous manual effort
with minimal gain. We also relaxed EC3 and included primary studies published on ArXiv. We did this for an
analogous reason: Some highly relevant contributions (e.g., Codex [62], and Code Llama [119]) have not been
published in peer-reviewed venues. Still, their quality is supported by the citations they received from the paper
in which we found them. This resulted in the inclusion of 26 papers. Thus, in total, we considered 107 studies. We
report their distribution in terms of venues in Table 3. We show the number of papers by publication year for the
81 studies and for the 26 snowballing papers we analyzed in Fig. 2. We did not report the number of occurrences
for 2017, 2018, and 2019 since we found no papers from those years.
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Initial Search Snowballing

Venue Papers Venue Papers

ICSE 17 ArXiv 7
TOSEM 14 ICLR 4
ESEC/FSE 13 EMNLP 3
TSE 9 ACL 2
ASE 9 MAPS 2
ICPC 8 NeurIPS 2
MSR 3 AST 1
JSS 2 NAACL 1
ICSME 2 ICML 1
SANER 2 KDD 1
EASE 1 LREC 1
EMSE 1 TMLR 1

Total 81 Total 26

Table 3. Number of papers extracted for primary studies and snowballing.
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Fig. 2. Number of papers from SLR by year.

3.4 Data Extraction
To answer RQ1, we looked for candidate quality filters. Specifically, we searched for (i) pre-processing techniques
used to clean up the dataset before training the model, and (ii) possible empirical evidence presented in the papers
(e.g., studies explicitly aimed at validating the effectiveness of a given filter). Two of the authors independently
extracted such information from the primary studies and assigned one or more tags representing the quality filters
adopted by each of them. We performed a card sorting activity aimed at merging duplicates (i.e., merging similar
tags representing the same quality filter). After this step, it could happen that some of the tags assigned by the two
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authors to a given paper differed (i.e., there were disagreements). When this happened, the authors discussed each
disagreement (i.e., tag that one author assigned and the other did not assign) to a given paper by reading once
again the paper, aiming at reaching a consensus. There has been no case in which we did not reach a consensus.
After such a preliminary step, we qualitatively analyzed the list of quality filters and derived the underlying issue
that the authors aimed to solve for each of them. Two of the authors independently derived an underlying data
smell for each quality filter identified in the previous step. For example, for the quality filter “duplicates removal,”
we derived the underlying data smell “presence of exact code clones.” Again, we performed a card sorting for
merging duplicate data smells and the two authors discussed disagreements aiming at reaching consensus. This
happened less frequently than in the initial tagging activity since this step was more straightforward. In the end,
we sorted the collected data and defined a taxonomy of data smells.

To answer RQ2, we first identified the datasets on which the quality filters detected in RQ1 have been applied
and how each of them has been used in the paper (i.e., as pre-training and/or fine-tuning quality filter). If
Transformer-based models were trained from scratch directly for the target task, we labeled them as “fine-tuning”
since no pre-training had been performed in those cases. Two of the authors independently carried out such
an analysis and discussed possible disagreements. We used an analogous process to answer RQ3: This time, we
focused on extracting the coding task at hand. Given the straightforward nature of such analyses, we registered
no disagreements. For both RQs, we plot the prevalence of the adoption of quality filters in terms of phase (RQ2)
and task (RQ3). We also report the same data divided by smell type.

We made our replication package publicly available [49]. It includes the list of the selected papers and the
labeling we performed.

4 RESULTS
In this section, we report the results and the answers to our RQs.

4.1 RQ1: Data Smells for Code-Related Tasks
In our qualitative analysis, we identified 106 quality filters applied by the paper authors. Starting from them, we
extracted 71 data smells for code-related tasks. Note that the number of quality filters differs from the number
of papers analyzed since each study can contain more than a single quality filter, or more papers can share the
same one. As a result, we constructed our taxonomy of data smells, which we depict in Fig. 3. Such a taxonomy
is composed of 9 root categories. For each category, we report in the top-right box the number of papers in
which the data smell appears. Note that the sum of such numbers is greater than the number of primary studies
considered since they can adopt more than a quality filter. It is worth noting that the number of occurrences does
not indicate the importance of the data smell, but rather its popularity in the research community.

We also annotate data smells with the � and � symbols to indicate that it has been empirically demonstrated
that their presence decreases the effectiveness of the model. The former symbol indicates stronger evidence (e.g.,
the data smell has been tested alone), while the latter indicates weaker evidence (e.g., the data smell has been
tested in conjunction with other data smells). We report in Appendix A the complete mapping between the root
categories of our taxonomy and the papers from which they have been extracted.

In the following, we discuss each category.

4.1.1 Limited Informativeness. This category holds the most number of occurrences (89) in the papers we analyzed
and it indicates different forms of noise and shortcomings.

Unsurprisingly, the most addressed sub-category is Noise Tokens [57, 67, 69, 71, 83, 92, 98, 100, 104, 106, 107, 122,
124, 127–130, 132, 142, 149, 156, 160]. Such a data smell category represents cases in which non-ASCII characters,
HTML/XML tags, URLs, file paths, literals, dates, code references, commit hash tokens, and PII tokens appear in
the instances. Such information is irrelevant to the model and makes the dataset less uniform since their presence
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may lead the model to focus less on the bigger picture and more on small details. In addition, URLs, file paths,
and PII tokens (Personally Identifiable Information) may be long, too specific to the domain context (i.e., project,
developer), and result in security and privacy issues [15]. These tokens are found in code, comments, and natural
language snippets.

The Non-Informative Tokens sub-category [64, 86, 127, 142, 150] occurs when instances contain tokens that
do not contribute to model learning. Lack of code structure tokens represents the scarcity of information on
the hierarchical structure of code that is not learned by the model. This does not allow the model to learn the
code structure information that is crucial for programming languages such as Python (e.g., code indentation).
Annotation tokens and notional tokens often receive less attention from models, indicating they contribute
minimally to the model’s learning. This disproportionate attention results in additional computational costs,
highlighting the potential for efficiency improvements by pruning these less impactful tokens [150].

Irrelevant Code [62, 66–68, 71, 83, 90, 92, 94, 97, 106, 111, 112, 124, 130, 135, 138, 151, 156, 159] occurs when
trivial, unhelpful, or even problematic code appears in the dataset. First, this is the case of boilerplate code (e.g.,
default getter and setter methods in Java), IDE autogenerated-blocks (i.e., naive summaries), overridden methods
(e.g., highly repetitive), obsolete code (e.g., outdated APIs), and deprecated code (i.e., set for upgrade or removal).
Out-of-scope code can be harmful as well. For example, out-of-scope code includes the presence of test code in
datasets that aim at containing examples of production code and vice versa. Finally, superfluous code occurs
when few statements are sufficient to provide useful information to the model, albeit being task-dependent.

We found a lower number of Inconsistent Conventions [63, 65, 66, 68, 90, 122, 130, 142, 146, 151, 153] in studies.
Such a sub-category of smells occurs when code conventions are not uniform throughout the dataset (e.g., some
instances use camel case and others snake case for identifiers). The conflicting signals resulting from using
inconsistent conventions may divert the learning of the code logic.

Finally, the Over-splitted Identifiers [124] sub-category refers to the splitting operation of instance components
in camel case or in snake case. This may misrepresent the original meaning of such a component.
Procedures to Address Limited Informativeness. One of the most common operations that aim to solve

such a data smell category is the removal of elements that can infect the instance.
When dealing with Noise Tokens such as non-ASCII characters, the common pre-processing operation is related

to the removal of such elements [67, 69, 83, 104, 106, 107, 128, 130, 149].
Instead, regarding URLs, paths, literals, dates, code references, commit hash, and PII tokens, a common procedure

is to identify and substitute them with a default one that abstracts their real content (i.e., https://www.d... ->
<URL_TOKEN>, /home/user/... -> <PATH_TOKEN>) [57, 71, 98, 100, 104, 122, 127, 129, 130, 132, 142, 149, 156, 160].
Different from the others, PII tokens are harder to detect. For this reason, specific detection models are trained
and used to detect them, followed by an abstraction operation with special tokens (e.g., <NAME>, <EMAIL>, <KEY>,
<PASSWORD>) [92].

Regarding Irrelevant Code, the common approach is to completely remove instances that represent test methods
[66–68, 90, 97, 106, 111, 130, 156], boilerplate code [66, 68, 90, 92, 94, 124, 159], overridden methods [90], obsolete
and deprecated code [112]. IDE auto-generated blocks are removed, leaving the code part of the instance intact
(if any) [62, 83, 92, 111, 124, 135, 138, 151, 156]. On the other hand, superfluous code has not been explicitly
addressed. However, prior study [71] empirically shows that not all statements of a method are needed to train
an effective model.

Instances that belong to the Non-informative Tokens sub-category in the form of annotations and notional
tokens are removed too. Instead, when there is a lack of structure tokens, these are added where needed to let the
model know the instance structure. For example, when dealing with Python code, tokens such as <INDENT> and
<DEDENT> are used [64, 86, 127].

The datasets affected by Inconsistent Conventions are generally treated in such a way that all instances follow
the same convention. An example may be the change of identifier formatting from snake case to camel case (e.g.,
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ordered_books -> orderedBooks) or the same code format applied to all instances (e.g., format to follow pep8
conventions for Python code) [63, 65, 66, 68, 90, 122, 130, 142, 146, 151, 153].

Instances affected by Over-splitted Identifiers are simply replaced with the original ones [124]. For example, if
an instance contains in a comment j Text Field it is replaced with the original complete identifier jTextField.

4.1.2 Data Leakage. We found only fifteen occurrences related to Data Leakage [76, 77, 82, 87, 92, 94, 97, 102, 103,
123, 141, 148, 156, 158, 159]. This category of smells includes issues regarding (partial) overlaps among datasets.
The Pre-Training/Fine-Tuning/Benchmark Contamination sub-category is strictly related to the transfer-learning
paradigm and to a fair evaluation. Pre-trained models have already been subject to training on a dataset % .
Fine-tuning them on a dataset � that shares instances with % (i.e., � ∩ % ≠ ∅), or evaluating them on a benchmark
(e.g., test set) � with similar instances result in an unfair evaluation of the model’s effectiveness. As a result,
the measured accuracy might be unnaturally higher, and the resulting model might be poorly generalizable
[77, 82, 87, 92, 94, 97, 103, 141, 158].

The Influencing Splitting sub-category regards the dataset splitting. When collecting a dataset for code-related
tasks, the usual procedure is to mine source code repositories and their histories to extract code snippets (e.g.,
methods) from files. Therefore, the dataset might contain several code snippets from the same file, and even
several versions of them in time. If the split into training, validation, and test sets is done in a completely random
way, it is likely that different sets (e.g., both training and test sets) contain code snippets from the same file or
even related to the exact same snippet at different times. Thus, similarly to the previous category, this might
result to an unfair evaluation of the model’s effectiveness and poor generalizability [123, 148, 159]. However, it is
worth noting that if the main scope is to fine-tune a personalized model (i.e., a model fine-tuned for a specific
project) the Influencing Splitting sub-category may not be harmful [54].
Procedures to Address Data Leakage. When dealing with the Pre-Training/Fine-Tuning/Benchmark Con-

tamination sub-category, a typical procedure consists of checking for overlapping instances between the pre-
training and the fine-tuning (or benchmark) datasets and making sure that they appear only in one of them
[77, 82, 87, 92, 94, 97, 103, 141, 158]. This can happen in different ways. The decontamination process can be
applied by removing the exact overlap between pre-training dataset instances and fine-tuning or benchmark
instances. On the other hand, a more specific analysis can be made by removing instances that are not exactly
equal. For example, instances that share at least a 10-gram (ten consecutive tokens) are removed [82]. Additionally,
another procedure consists in using embedding models to identify and remove code snippets with high semantic
similarity [141].

Instead, as for the Influencing Splitting sub-category [123, 148, 159], the procedure is to make sure that all
instances that originate from the same file are present only in one of the three sets and not scattered in them [123].
If there are several code snippets<8 that belong to the same source file 5: , the splitting procedure must ensure
that all the<8 belong to the same set (either training, validation, or test). An analogous procedure is applied
at the project granularity level. The code snippets<8 that belong to the same project ? 9 are moved as a group
across the three sets (and never scattered among them) [148]. Finally, a different approach is adopted when the
dataset contains different revisions in the history of the project of the source code at hand. In this case, instances
are scattered in chronological order among the three sets. If there are several revisions A8 , with 8 ∈ [0, # ], based
on the splitting ratios (AC for the training, AE for the validation, and A) for the test sets) the earliest revisions
(A {0,...,#AC } ) will be placed in the training set, while the latest ones will be placed in the validation (A {#AC ,...,(AC+AE ) } )
and test (A {# (AC+AE ),...,# } ) sets [148].

4.1.3 Lack of Context. Thirty-four occurrences from the studies we considered included quality filters aimed at
enhancing the context of the code in the instances we considered. Thus, the lack of context (e.g., class, method, or
project information) is considered a possible cause of lower model’s effectiveness. Most of the previous works
[36, 47] [66, 68, 104, 105, 110, 124, 129, 130] operate at method level granularity. It means that the training
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instances are lines of code representing a whole method. However, method-level information might be insufficient
for some tasks.

Let us consider the Code Review task in the code-to-code format with method-level granularity as a running
example to illustrate the different types of lack of context. In such a task, given a code snippet (method), the
objective is to generate the revised version of the code [129]. In other words, the dataset is composed of pairs
〈<1,<0〉 ∈ % , where<1 is the code to change,<0 is the code after the edit, and % is the project to which the pairs
〈<1,<0〉 belong. The changes required to transform<1 to<0 may require plenty of contextual information.

First, the model might need to know what other methods/variables are available in the same class, and what
other classes/methods are available in the same project. If it does not, the model needs to make up method and
class names based on the general knowledge it acquired to make some edits. Classes and methods made up by
the model might be missing and, even if they do not, they might have different behaviors from the ones assumed
by the model. For example, a method might return null in certain conditions while the model assumes it does not.
If this happens, the dataset is affected by Lack of Class Context [73, 94, 99, 117, 118, 156] – the model does not
know how the class behaves – and Lack of Project Context [72, 82, 99, 122] – the model is not aware of the other
classes/methods available in the project.

The model might not be aware of how the method it aims to change is supposed to work in the first place. This
generally happens when no documentation for the method is provided to the model. If there is no documentation,
the edit suggested by the model might change its contract (e.g., the method returns null while it is not supposed
to do it). When this happens, the dataset is affected by Lack of Documentation [89, 99, 131, 156]. Besides, the model
might need to know which external libraries are adopted: If the project uses org.apache.commons.csv4 for CSV
file processing, and the model is unaware of its functionalities, it is likely to generate suboptimal or incorrect code.
If such information is lacking, the dataset suffers from Lack of External References [100, 116, 121, 152, 155, 160].

Finally, there might be plenty of valid edits that could be done with the input code. Consider, for example,
a method that lacks a null check (possible bug) and that is poorly readable. Given such a method, the model
might not know what edit it is supposed to do (adding the check or improving the readability). The ground truth
(i.e., the actual edit in the dataset) might contain a partial change (e.g., only the null check). In this case, the
model would be trained to blindly perform some kinds of operations that are valid in a specific context (the
developer was not focusing on improving code readability) without knowing what this context is. Some guidance
(e.g., natural language instructions, such as the ones included in the commit message) might help the model
understand what properties of the code it is supposed to change. When this happens, the dataset is affected from
Lack of Guide/Indication [58, 59, 64, 78, 95, 106, 125, 126, 128, 134, 141, 147, 160].
Procedures to Address Lack of Context. To address the Lack of Class Context smell, many procedures

have been used. One of these is to take into account more lines before and after that code taken into account
[94, 117, 118] letting the model exploit the additional information they provide. A more complex approach is to
extract the class context information (i.e., class methods) and encode it into vector representations to feed specific
model components (e.g., a new encoder) [99]. This, however, requires tweaking the standard model architecture.

A similar procedure is adopted to address the Lack of Project Context smell [99]. Additionally, another procedure
involves the use of ad-hoc tools (e.g., static code analysis tools) that, based on the generated project graph structure,
can find cross-file context that is jointly learned with the actual instance (which needs project context) [72]. In
the case of extra-class information (i.e., usage of other classes), another process is the simplification of members
[122]. For example, reducing it in the following way: task.assets.completeBtn -> completeBtn. Such a
simplification aims to decrease the degree of dependency on external contexts. Albeit the previous procedures
are fit for the fine-tuning dataset, Lack of Project Context can be addressed also for the pre-training one. The

4https://github.com/apache/commons-csv
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procedure involves a topological sort of project file dependencies in a way that all dependent files are placed in a
specific order, ensuring that the context of each file relies on the files that appear earlier in the sequence [82].

As for the Lack of External References smell, different procedures are adopted. One of them (Lack of API
knowledge) consists in encoding the API documentation into a vector representation for a specific component of
the model (i.e., one of the encoders) [121]. Another one (Lack of Third-party Libraries Knowledge) leverages an
information retrieval approach to gather import statements, directly informing the model about the libraries
in use, enhancing its accuracy [100]. Alternatively, RAG-based solutions [33] are very common. One of them
(Lack of Similar Examples) aims to augment the context by retrieving similar examples from proxy datasets (i.e.,
instances that neither appear in the training set nor in the test set) [116]. Similarly, historical instances stored in
a local data archive can be retrieved through ad-hoc models (e.g., kNN-LLM) to augment each instance [160].
Furthermore, other sources of external references can be retrieved, such as external documentation (Lack of
External Documentations) [152], and expert information needed for the task at hand (Lack of Detailed Information)
such as descriptions and examples of the missing knowledge [155].

As for the Lack of Documentation smell [89, 99, 131, 156], the papers we analyzed do not propose any concrete
solution. However, one of the primary studies we considered [131] provides empirical evidence showing that the
presence of comments documenting the code is beneficial for code-related tasks.

Finally, to tackle the Lack of Guide/Indication sub-category, the common approach is to augment the code
instance with additional information, such as the commit message that documents the change from which the
code instance derives [59] and the code review message [95]. In more specific scenarios (e.g., Automated Program
Repair), feedback indications are also useful, such as the error type to fix [58, 64]. Another common procedure
consists in dividing complex tasks into simpler ones. For example, a model can be explicitly trained to first localize
where to apply the change and then, conditioned by such localization (which serves as an indication), perform it
[78, 106, 125, 134]. In addition, extracting important statements from the code through ad-hoc models can be
beneficial [126]. Last, but not least, training a model with generated CoT (Chain-of-Thought) [52] instances by
teacher models (e.g., GPT-4 [9]) allows the model to learn how to provide itself indications while generating code
[141].

4.1.4 Source Code Quality Issues. Low-quality code and documentation are known to be detrimental to software
maintenance and evolution in general. We found many occurrences (56) reporting that the Source Code Quality
Issues is a problem also when training and testing models for coding tasks. We categorized the specific smells
into categories, Lack of Code Quality and Lack of Comment Quality, which refer to the presence of quality issues
regarding the source code or the documentation, respectively.

As for the Lack of Code Quality [56, 67, 69, 70, 79, 82, 84, 91, 96, 101, 123, 124, 130, 136, 142, 143, 145, 149,
150, 153, 159], we identified both functional and non-functional issues that could affect the source code in the
datasets. Instances of code that are not compilable, that contain syntax errors, vulnerable code, and poisoned
code (functional issues) may mislead the model not only for those specific instances but also for others. Indeed,
the model is partially trained to make those mistakes. A similar effect is given by code instances that contain
dead code and commented-out code. Non-descriptive method signatures and low-quality identifiers, as well as
unreadable and non-modular code, (non-functional issues), are more subtle problems. Let us consider an instance
with the method name handle(): It is unclear what the method handles. Thus, the model likely learns less about
what the method should achieve. Note that these smells are highly related to the ones regarding the Lack of
Context. Some class-related information might make the meaning of a generic method name like handle clear. As
for the identifiers, instances that contain variables named x instead of length, qr instead of query, flag instead
of isValid obscure the real meaning and usefulness of such identifiers, reducing the understandability of the
code for the model.
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The Lack of Comment Quality [57, 65, 100, 104, 106, 115, 124, 130, 135, 156, 159] also might be detrimental.
Similarly to what happens with human developers, empty comments, short comments that do not contribute
to informativeness, too long comments that contain unnecessary details, and inconsistent comments, make the
code understanding step more problematic.

One smell is a sign of both poor comment and code quality: Self-Admitted Technical Debt [104, 124, 130, 132,
149, 156]. The presence of Self-Admitted Technical Debt (i.e., comments reporting TODO, FIXME, and more complex
ones [13]) entails low-quality code (there is technical debt) and comments (the comment report the technical
debt instead of providing interesting information about the code).
Procedures to Address Source Code Quality Issues. Instances that contain syntax errors and that are

not compilable are generally removed [67, 69, 82, 84, 96, 123, 130, 145, 159]. The same is true for snippets
containing commented-out code [124, 149]. Regarding method name and identifier quality, no approaches have
been devised to solve such an issue; however, empirical evidence shows that such smells can negatively impact
the model’s performance, leading to reduced understanding, lower accuracy, and potential security vulnerabilities
[56, 79, 91, 101, 136, 142, 150, 153, 159].

Regarding unreadable code and low modularity code, such smells are addressed by removing the affected
instances; however, no specific procedures are documented in the studies we analyzed [82]. Dead code, vulnerable
code, and poisoned code have been empirically shown as detrimental [70, 91, 143]. Again, the procedure to
address them consists in detecting such instances and removing them. Such detection can be made through
activation clustering [44], spectral signature analysis [41, 46], and ONION [38].

Similar strategies are adopted for low-quality comments. One of the strategies consists in removing the whole
instances containing comments that are not perceived as quality-worthy [57, 65, 100, 104, 106, 115, 124, 130, 135,
141, 156, 159]. However, it is worth noting that many syntactic checks can be performed with CAT [124] that
allows to detect most of the smells we identified. To address code-comment inconsistency, a procedure consists
of detecting the affected instances using tools such as DocChecker and removing them [17]. Another procedure
consists of removing only the comments, for example when they are too short, too long, or contain special
symbols or tags [57, 124].

Similarly to other smells in this category, Self-Admitted Technical Debt is tackled by detecting through string-
matching possible candidates (i.e., TODO, FIX-ME, etc.) and removing them [104, 124, 130, 132, 149].

4.1.5 Data Distribution Issues. A dataset is affected by Data Distribution Issues when the distribution of some
code properties (e.g., snippet length) is strongly skewed (Long-tailed Distribution), when the dataset is not big
enough (Small Dataset), or when dataset suffers from poor diversity (Non-diverse data). Eighteen occurrences
report quality filters or empirical evidence regarding data distribution issues. Actually, data distribution issues
are not specific to Transformer-based models for coding tasks: Any machine learning model benefits from a
balanced distribution of the data. For example, classifiers benefit from a balanced class distribution, and class
imbalance affects the model accuracy on minority classes [22, 27, 28].

The Long-tailed Distribution smell [115, 157, 161] refers to an analogous kind of imbalance: A few classes (in
this case, code or change properties) are highly represented, while most of the classes are lowly represented.
When trained on a long-tailed distribution dataset, the model will perform better on the few common instances
(i.e., high-tail) and poorly on infrequent ones (i.e., low-tail). In this context, however, it is very hard to formalize
which code properties need to be balanced. The main issue lies in the many properties of the source code that
could be measured. Let us consider, again, the Code Review task we already mentioned in Section 4.1.3. Let
� = {41, 42, . . . , 4=} be the types of edits found in the dataset. Let us assume that the edit 48 (e.g., rename a
variable) is one of the most frequent ones, while the edit 4 9 (e.g., edit a comment) occurs a few times. A model
trained with such a dataset will probably generate a higher number and more successful predictions when
changes related to 48 than to 4 9 . This smell affects the generalizability and the robustness of the model. The Small
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Dataset sub-category [60, 80, 93, 107, 109, 114, 120, 144, 147] is self-explanatory: Having a dataset with too few
instances naturally reduces the learning capabilities of the model [32]. A small dataset also reduces the exposure
of the model to diversity. The Non-diverse Data refers to the lack of variation in the dataset instances, which
can significantly impact the model’s ability to generalize across multiple scenarios. This smell closely relates
to Long-tailed Distribution, but differently from it, consists of only similar-context instances. Let us take as an
example the Code Readability Improvement task, where the improvements the model can perform are multiple
(e.g., renaming variables, adding comments, or refactoring complex logic flows). A dataset made for the most part
by renaming operations will expose the model to few improvement edits, letting the latter be able to improve
code readability only by performing a specific operation (e.g., renaming variables). If this happens, the dataset is
affected by Non-diverse Data.

Procedures to Address Data Distribution Issues. A solution to data distribution issues classically adopted
for machine learning is to adopt data augmentation techniques. For example, let us consider the Automated
Program Repair task:The dataset is composed of pairs 〈broken code, repaired code〉. Whether there is a low quantity
of such instances (Small Dataset), a possible way to fix the smell is to collect a series of methods assumed to
be correct and mutate them to introduce issues [93, 144]. Furthermore, data augmentation techniques can also
leverage models to generate synthetic data that can be aggregated to the few already collected to improve the
size of the dataset [80, 114, 120, 147]. Another useful operation that aims to solve the Small Dataset issue is to
leverage a dataset for a code-related task that is similar to the task at hand and perform a phase of supervised
pre-training with such a dataset before fine-tuning the model for the target code task [107]. Let us consider, again,
the Automated Program Repair task. A possible dataset for the supervised pre-training is the dataset used for the
Code Review task, which contains generic code changes, not just the ones aimed at fixing bugs. A supervised
pre-training helps the model to gain more knowledge related to code changes and then to leverage the learned
features to increase its learning for bug-fixing task.

As for the Long-tailed Distribution [115, 157, 161], a possible procedure consists of forcing the model to focus
on rarer instances. This can be achieved by implementing methods like Focal Loss [34], which modifies the loss
function to give more weight to rare examples, encouraging the model to learn more from underrepresented
distributions [157].

Regarding the Non-diverse data [96, 103, 111, 113, 119, 137], the common procedure is to directly rely on
instances conditionally generated by teacher models (e.g., GPT-4 [9]) following specific guidelines. The procedure
heavily relies on knowledge distillation process [24] which involves transferring knowledge from a large, pre-
trained teacher model to a smaller student model. Given the nature of teacher models to comprehend natural
language, it is possible to condition the instances generated by the teacher model with the aim of collecting
instances diverse from each other. Examples of such procedures are self-instruct [111, 113, 119], OSS-instruct
[137], and Code-Eval-Instruct [103].

4.1.6 (Near) Duplicated Instances. Smells from this category occur when duplicated or near-duplicated instances
appear in the dataset. We found 48 occurrences documenting such issues.

First, the Presence of Exact Code Clones smell [57, 58, 66, 67, 75, 81, 86–88, 100, 104–110, 115, 118, 121–125, 129,
130, 132, 139, 155, 158] refers to the presence of type-1 clones. If identical instances are present in the dataset, it
is possible that, after splitting it into training, validation, and test sets, the clones are spread in the three sets,
with the natural consequent issues related to hyperparameter tuning and model testing. The problem remains
even if the duplicates are not spread among the three sets. If they are part of the training set, this redundancy
reduces the dataset diversity, which might lead to overfitting [11]. As a result, the model is less generalizable.

Presence of Other Code Clones [56, 66, 68, 82, 92, 93, 101, 102, 119, 135, 137, 146, 156] refers to renamed/-
parametrized, near-miss, and semantic clones (types 2, 3, and 4) [10, 43]. This smell might result in the Long-tailed
distribution smell because the cloned instances may bias the model towards the highly represented classes.
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The consequences are analogous to those of Long-tailed distribution. Additionally, this smell might inflate the
performance results at test time, since the model is trained on similar instances to those present in the test set.

Presence of Duplicate Files [58, 65, 69, 128, 139] is related to the data collection phase. When retrieving data from
open-source repositories it is very likely to find the same contents in different files (e.g., files from non-tagged
fork repositories, or mirrored repositories). The consequences are analogous to those of Presence of Exact Code
Clones.
Procedures for Addressing (Near) Duplicated Instances. To address the both Presence of Exact Code

Clones and Presence of Other Code Clones, the most commonly used methodology consists in simply removing
the duplicates. As for the former, a simple string match can be adopted. The latter, instead, requires specialized
tools, like the one proposed by Allamanis [11], which also detects and removes non-exact code clones. Similarly,
another procedure consists in removing those instances that share a high similarity degree measured with metrics
such as BLEU [37].

As for Presence of File Duplicates [58, 65, 69, 128, 139], different depth-degree manners exist to address such a
smell. The straightforward manner consists of performing simple string matching checks of the file contents [69],
while a more detailed analysis consists of comparing the Abstract Syntax Trees [58] or removing files with the
same hash [65, 128, 139].

4.1.7 Language Issues. The Language Issues category contains smells related to what languages are used (both
technical, e.g., the source code, and natural, e.g., the comments) and how they are used. We found twenty-four
occurrences related to such issues.

The Uneven Natural Language sub-category [57, 92, 124, 129, 130, 138, 149, 156] refers to the presence of tokens
or entire instances in different natural languages from the ones on which the model has been pre-trained. Since
many of the models are pre-trained on English [18, 40], uneven language often means that non-English tokens or
sentences are used. Even though programming languages are made of English keywords, developers can use
any language for identifiers and comments. Since the code-related datasets are mined from public repositories,
it is very likely to have tokens in languages other than English. This smell is implicitly related to Long-tailed
distribution, when the imbalanced distribution at hand is the one of the natural languages used.

The Lack of Technical Language smell [55, 77, 82, 112, 129, 140, 146, 154] appears when technical language is
lacking in the pre-training stage. This is especially important for code-related tasks that include natural language
(i.e., code review, code generation) or need domain-specific knowledge (e.g., API libraries). If the model has not
learned specific technical terms during pre-training, or it has not been exposed to technical documentation, it
may not be able to fully replicate their use with the fine-tuning stage alone. For example, let us consider the Code
Review task, in which, besides the source code to modify, the model is fed with a natural language command
indicating the action to perform. If the model is given the textual command “Remove ternary operator to increase
code readability” and has not been sufficiently exposed to the concept of “ternary operator”, it will likely not be
able to fulfill the request.

The Lack of Natural Language smell [58, 74, 119, 128] appears when natural language is lacking in the pre-
training stage. This is important for both code-related tasks that include natural language and for tasks that
do not. Natural language allows the model to better understand and transfer the semantics of variables and
method names to source code [128]. During code writing, developers name variables and method names based
on the semantic meaning of the natural language vocabulary. A model which is directly pre-trained on code may
encounter major difficulties in managing the real meaning the developers primarily assigned to it, likely to be
conditioned only by learned patterns.

The multi programming language sub-category [56, 61, 127, 133] has its benefits and drawbacks. When the
primary objective is to enhance performance in a low-resource programming language (e.g., Ruby), utilizing a
dataset comprising various programming languages can be advantageous. This is because code structures across
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different languages often exhibit similarities, with consistent patterns in identifiers and method names [56].
However, the beneficial pattern of shared structure and identifiers across languages does not uniformly apply to
all code-related tasks. Incorporating code snippets from multiple programming languages can be a smell. It might
lead to suboptimal outcomes for tasks where specific language features are predominant [133].

Procedures to Address Language Issues. To address the Uneven Language sub-category, the most common
operation is to remove part of the instance or the whole instance containing non-English terms. The former can
be done for isolated cases, e.g., if non-English tokens are used in a few comments, only those comments can
be removed without removing the whole instance. Removing the whole instance is preferred when the code
is documented in a non-English language in which method names and variables are based on a non-English
language. Different procedures are applied to detect non-English text. One procedure consists in verifying if the
text can be encoded in ASCII [149], or directly excluding instances that contain non-Latin characters [130]. More
precise procedures involve the usage of external libraries aimed at detecting languages [92, 139] such as “langid”
[5] and “cld3” [6], and “fasttext” [2, 29].

Instead, to address the Lack of Technical Language sub-category, a typical procedure consists of collecting
instances from platforms that are likely to contain pairs of natural language of technical nature with the related
code (i.e., related to code scenarios), such as StackOverflow questions and comments [77, 82, 129], StackExchange
[55], issues from an issue tracker, and commit messages [82]. Additionally, on top of the previous sources of
technical language, other sources rely on the information related to API such as names, and documentation. Such
information is easily extracted by parsing the official API documentation [140, 146].

Regarding the Lack of Natural Language sub-category, the procedure involves the collection of natural language
instances such as those extracted from books, Wikipedia, and news articles [128]. It has been shown that relying
on models already pre-trained on natural language and running an additional pre-training phase on code generally
allows to achieve better results [58, 74, 119].

4.1.8 Inadequate Source Repositories. The source code repositories from which the dataset is collected play a
crucial role both in terms of quality and realism of the dataset. We found 22 occurrences of Inadequate Source
Repositories.

The Irrelevant Repositories [64, 67, 69, 75, 95, 97, 105, 106, 108, 110, 118, 127, 128, 138, 139, 149, 151] refer to
the use of repositories that may contain code samples that are not qualitatively useful. Often, these are referred
to as toy projects, i.e., repositories created for experimental purposes or as a means to become familiar with
GitHub functionalities. It is likely to collect code that lacks depth and real-world application. Such code may
not represent realistic software development scenarios, leading to a dataset that misrepresents the complexity
of code-related tasks [105]. Note that the Use of Fork Repositories smell might cause also the presence of (Near)
Duplicated Instances.

Inactive Repositories refers to the use of repositories that are no longer maintained and updated. This may
have as a consequence the collection of obsolete and vulnerable code, and consequently teaching the model to
generate such poor code.

The Domain-specific Irrelevant Repositories sub-category [66, 68, 75] refers to the collection of code instances
from repositories within a different application domain than the one targeted by the model. For example, assume
to collect a dataset containing instances in Java to build a code completion model tailored for Android projects:
Instances unrelated to the Android domain will likely confuse the model and make it more “general-purpose,”
which is unintended, in this case.

Procedures to Address Inadequate Source Repositories. To tackle the Irrelevant Repositories sub-category,
many heuristics have been applied. The first common approach is to filter repositories based on the number of
stars on GitHub [64, 67, 69, 75, 95, 97, 105, 106, 108, 110, 118, 127, 128, 138, 139, 149, 151]. For example, a common
procedure is to exclude repositories with less than 10 stars [118]. Some other papers consider a repository “mature”
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and trustworthy based on the number of contributors and the number of commits: For example, previous work
excludes repositories with less than 10 contributors and less than 500 commits [105]. In addition, fork repositories
are generally excluded [127]. Regarding inactive repositories, a simple solution consists in excluding repositories
without commits in the last few years: For example, previous work excluded repositories in which the latest
commit was older than five years [69].

To address the Domain-specific Irrelevant Repositories sub-category, an approach involves leveraging repository
metadata to filter out-of-domain repositories. Metadata such as labels and topic tags are taken into account to
build a classifier or on which to apply heuristics [75].

4.1.9 Misleading Instances. Some instances, above all if in conjunction with other conflicting instances, might be
misleading and, thus, confuse the model. We found 40 occurrences related to such issues.

The Non-meaningful Instances sub-category refers to those instances in the dataset that have little impact on
the model’s learning. This includes trivial instances, e.g., consisting of a low number of tokens that do not provide
enough context and contribution to model learning [67, 82, 83, 97, 104, 105, 107, 108, 110, 111, 129, 132, 138, 139,
151].

Instead, the Confusing Instances sub-category [62, 65–68, 82, 84, 90, 97, 101, 105–108, 110, 111, 118, 125, 129,
132, 139, 151] refers to instances that might confound the model. Long instances are composed of too many
tokens that can exceed (inadvertently) the native model capacity. It is possible to truncate such instances to the
maximum number of tokens acceptable from the model. However, this may lead to a crucial loss of information,
hindering the model from learning the rightful features. Incorrect references refers to input-output pairs in which
the input, which serves as context, is incorrect. For example, in the Test Case Generation task, the heuristics used
to retrieve the method under test may fail, resulting in instances where the reference for the test to be generated
does not match the actual one. This teaches the model to generate test cases that are not related to the given
method under test. In addition, given the repetitive nature of code, it is possible that coding tasks in which code
is given as input and code is expected as output share the same input, but have different expected output. Let us
consider the previously-mentioned Code Review task and let us imagine that a code snippet from StackOverflow
that is both buggy and unreadable is adopted in two distinct projects, A and B. A developer in project A changed
it to improve its readability, while another developer in project B fixed the bug. If both instances are kept, the
model is trained to perform two conflicting actions given the input code. In such a context, the dataset introduces
ambiguity, changing continuously the “ground-truth” during the training phase and, as a consequence, hindering
model learning.
Procedures to Address Problematic Instances. To address Non-meaningful Instances, a typical solution

is to filter out instances with less than a given amount of tokens. Such a number may vary (e.g., 3 or 10) [110].
As for Long instances, a possibility is to apply the opposite approach used for Non-meaningful Instances, i.e.,
remove instances with more than a specific number of tokens. This number may also vary, but it is usually set
as the maximum number of tokens that the model can natively handle [66, 68, 90, 97, 105, 107, 110, 129, 132].
When taking into account whole files, those bigger than 1MB are excluded. Additionally, a more subtle procedure
is to exclude files with an average line length greater than 100, and a maximum line length greater than 1000
[62, 65, 118, 139]. Regarding Incorrect Reference, the procedure consists of employing more accurate retrieval
of the reference, assuring a better alignment between the input reference and the output. For example, in the
context of Assert Statement Generation, “Last Call Before Assertion” retrieval of the focal method is replaced
with seven test-to-code traceability techniques [84]. The procedure used to address instances with the same input
but different outputs consists in removing such instances. As a running example, take the instances 〈� 9 ,$ 9 〉, and
〈�: ,$:〉 with � 9 = �: . In this case, the edit distance is calculated: 3 9 = 3 (� 9 ,$ 9 ), and 3: = 3 (�: ,$: ), then the pair
with highest edit distance is discarded.
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Data Smell Pre-Training Fine-Tuning

Limited Informativeness 18/36 36/97
Data Leakage 6/36 10/97
Lack of Context 9/36 28/97
Data Distribution Issues 3/36 18/97
(Near) Duplicated Instances 22/36 40/97
Source Code Quality Issues 7/36 30/97
Language Issues 13/36 18/97
Inadequate Source Repositories 13/36 16/97
Misleading Instances 15/36 21/97

Table 4. Data smell distribution per stages.

4.2 RQ2: Pre-Training and Fine-Tuning Datasets
Most of the times (72.9%, i.e., 97 out of the 133) researchers have applied quality filters to improve the fine-tuning
dataset. Of these, 26 times researchers have also used quality filters to improve the pre-training dataset. Finally,
only 10 times they have applied them to improve the pre-training datasets only. Note that the number of times
(133) does not correspond to the number of papers we studied, since a single paper can contain different quality
filters aimed at addressing data smells in both datasets. For example, a paper may address the (Near) Duplicated
Instances smell both in the pre-training dataset and the fine-tuning one. In this case, we count one for pre-training
and one for fine-tuning. This result is most likely linked to the very nature of the models we focused on, which
allows to reuse models previously pre-trained (transfer learning). The authors often leverage Pre-Trained models
such as T5 [40] and CodeT5 [51], tailoring them through fine-tuning to the downstream task(s).

We report in Table 4 the distribution of the addressed data smell categories identified in RQ1 for both stages. It
can be observed that the distribution is generally very similar, with a few exceptions. A relevant percentage of
Source Code Quality Issues filters have been applied to fine-tuning datasets (31%), while they are less prevalent as
pre-training filters (19%).

More specifically, as for the pre-training stage, we observed that Limited Informativeness and the (Near)
Duplicated Instances categories are the most addressed data smells. Furthermore, we find a notable discrepancy
in the adoption of quality filters between the two stages, in which more specific operations are applied during
the fine-tuning stage. This is likely due to the many properties that could be taken into account to run a subtle
analysis. Extracting code properties and filtering instances based on such properties may require much time and
reduce the initial pre-training dataset size.

Finally, regarding fine-tuning datasets, we observe that quality filters for all the categories of smells are adopted,
albeit in different proportions. The most addressed is the (Near) Duplicated Instances category (41%), followed
by Limited Informativeness (37%), and Source Code Quality Issues (31%). On the other hand, Inadequate Source
Repositories (16%) and Data Leakage (10%) are the less addressed ones. This raises concerns regarding the actual
evaluation of the models effectiveness, which may overestimate their performance in a real-world setting.

4.3 RQ3: Code-Related Tasks
The papers we selected in our literature review tackle a total of 27 different code-related tasks aimed at generating
code. We report in Table 5, for each task, the percentage of papers using at least a quality filter for tacking each
category of smells. We only include the tasks for which we have three or more papers. The last row, instead,
reports the number of papers by task. It is worth noting that, for some tasks, the large majority of papers use
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Smell Code Sum. Code Gen. Prog. Repair Code Compl. Code Tran. Code Review. Bug Fix. Vul. Rep. Asser Gen.

Limited Info. 11 10 2 8 1 1 1 0 0
Data Leakage 6 5 0 2 2 1 0 0 0
Lack of Context 5 6 5 2 1 1 2 2 1
Data Distr. Iss. 3 5 4 0 3 2 0 2 0
(Near) Duplic. Inst. 10 12 4 6 2 3 2 2 2
Source Code Quality Issues 14 9 2 2 2 1 2 0 0
Language Issues 9 6 2 3 1 2 2 0 0
Inadequate Src Repos 3 3 1 4 1 1 0 0 2
Misleading Instances 3 7 2 4 2 2 1 0 2

# Papers (Total) 27/107 24/107 13/107 12/107 9/107 7/107 5/107 4/107 3/107

Table 5. Number of smells per task with total papers. We only report tasks for which we have more than two paper. Note
that each paper used one or more filters, thus the sum is not equal to the total in the bottom row.

some categories of quality filters. For example, almost all the papers (8 out of 12) tackling the Code Completion
task use quality filters to address Limited Informativeness smells. On the other hand, some smells are not taken
into account at all for some tasks. An example is given by the Data Leakage category, which has never been
addressed for the Bug-fixing task. Similarly, Data Distribution Issues has never been taken into account for the
Code Completion and Bug-Fixing, which are the two of the common tasks tackled in the papers included in our
literature review. This raises the need for further investigations in this direction.

5 IMPLICATIONS AND GUIDELINES
We presented a catalog of 71 data smells of code-related tasks. In this section, we provide implications for
future research in this field and discuss guidelines for researchers and practitioners who aim at training and
experimenting with LLMs.

5.1 Implications
Since building datasets requires plenty of time, it is common to reuse previously-defined ones. However, many
datasets currently available might be affected by several data smells. Since building datasets requires plenty of
time, it is common to reuse previously-defined ones. For example, Shi et al. [124] and Sun et al. [45] found different
categories of what we call data smells in the CodeSearchNet dataset [26]. Such a dataset has been adopted to
pre-train most LLMs for coding tasks and even for fine-tuning them on specific downstream tasks [66, 124] [45].
Furthermore, even datasets used as benchmarks have been found to contain data smells [84], raising serious
concerns about the actual evaluation procedures of the models. For this reason, updating existing pre-trained
LLMs for coding tasks on cleaned versions of existing datasets (e.g., CodeSearchNet) might have benefits for most
future works. Finally, manually curating data smell-free benchmarks (similar to HumanEval [62]) for different
tasks can be beneficial for a fair and reliable assessment of models performance.

� Updating existing pre-trained LLMs for coding tasks on cleaned versions of existing datasets (e.g.,
CodeSearchNet) might have benefits for most future works.

Despite the previously-mentioned studies on CodeSearchNet providing important evidence on the problem of
dataset quality issues, our literature review shows that it is currently unknown to what extent existing datasets
are affected by data smells. To the best of our knowledge, many current datasets (e.g., CodeXGLUE [35], GitHub
Code dataset [3], The Stack [31]) have not been adequately investigated in terms of data smells.
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Procedure # Papers

Remove 73 (68.2%)
Add 53 (49.5%)
Edit 30 (28.0%)

Table 6. Number of papers in which each category of fixing procedure appear.

� It is essential to investigate the diffusion of data smells in widely-used datasets.

On the other hand, most papers use quality filters despite their effectiveness is mostly based on conjectures.
This shows a big weakness in the literature: We do not know whether and to what extent some quality filters
benefit the models and thus how data smells of code-related tasks negatively affect them. Some issues have
been collectively assessed (�) and, thus, we do not know to what extent each specific smell impacts the model.
Besides, there may be different operations to address such data smells. For example, instead of removing instances
with non-English terms, a viable approach may be to automatically translate them. Finally, the focus of existing
empirical studies on the effects of smells is only limited to some relevant aspects (e.g., effectiveness), while such
issues might impact the other aspects as well (e.g., time needed to train the model, robustness, or security).

� Even when empirical evidence is provided that specific data smells negatively affect the model, much
more work is needed to enrich our knowledge on what effects they might have and what benefits it could
bring removing them. Future work should aim to empirically analyze how most of the data smells of
code-related tasks affect training.

The procedures adopted in the primary studies to address the data smells we presented are many and diverse. To
understand how researchers generally handle data smells, we manually classified such solutions into 3 categories
and report the number of papers in which such categories have been adopted in Table 6. Note, again, that the
sum is greater than the number of papers we analyzed (107) since a paper could include quality filters belonging
to different categories. Most papers simply remove the affected instances (or part of them), which reduces the
size of the training set and might cause the loss of precious examples (even unique, in some cases). Even the
detection strategies adopted are sometimes very simple. For example, Self-Admitted Technical Debt is typically
detected by using keyword matching. For most of such detection strategies, we do not know (i) what is their
accuracy in detecting affected instances or datasets, and (ii) whether more accurate strategies might exist.

� Future work should aim at devising more precise strategies for detecting data smells and more advanced
procedures for improving the quality of datasets. Such work should rigorously validate both the detection
and fixing procedures.

Existing empirical evidence on the effects of data smells regards the effectiveness of the models. In other words,
previous work only evaluated the functional advantages of removing data smells. On the other hand, removing
some smells might greatly affect other non-functional aspects. For example, removing affected instances might
reduce the training time and power consumption of such models, thus improving their sustainability. On the
other hand, reducing or modifying the training instances might negatively affect the robustness of the model.
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� Future work should investigate the impact of data smells on non-functional aspects, such as training
time, sustainability, robustness, security, and performance.

5.2 Guidelines
The smells we found and reported in our taxonomy are, by nature, contextual and dependent on the coding task
at hand. Indeed, any given smell might impact some tasks more than others. In some cases, certain smells might
even be completely irrelevant. A clear example is the presence of HTML/XML tokens. While such tokens are
detrimental when they appear in some dataset (e.g., in the summaries in code summarization datasets), they need
to be kept for other tasks, for which they might even be fundamental. Such tokens, indeed, could be a legitimate
part of source code that needs to be generated (e.g., in web applications). Similarly, while having unreadable
code is generally undesirable, the Code Readability Improvement task requires its presence in the training set to
understand how to transform unreadable code into readable code. For this reason, the smells we provide constitute
a super set of problems that might affect a given dataset for a given coding task. Nevertheless, there are a few
data smells that could be considered universal, i.e., they are relevant for any coding task and practitioners should
always remove them. We identified only five of such categories of smells: (i) (Near) Duplicated Instances, (ii) Data
Contamination, (iii) Equal “input” instances but different “output”, (iv) Lack of context, and (v) Data Distribution
Issues. Practitioners should address the five universal categories of data smells for any task. Besides, they should
carefully check what additional categories from our taxonomy are relevant to their task.

After practitioners choose a specific set of data smells of interest, they should try to address them at different
steps of the training and evaluation of the model. Given the complexity of such a task, we provide in Table 7 a list
of guidelines that practitioners can adopt to make sure they do not incur in the problems presented in this paper.

6 THREATS TO VALIDITY
Threats to Internal Validity. The procedure we used to define our catalog of smells (RQ1) is mostly based on
manual analysis. Such an approach might result in the introduction of arbitrary decisions. We tried to limit this
threat by ensuring that two of the authors independently inspected each paper and extracted the quality filters
used in it. Besides, two of the authors extracted the data smells from each quality filter, again, independently one
from the other. Since we adopted a tagging-based approach for extracting the quality filters and data smells, we
can not compute the level of agreement through the metrics generally used in similar contexts (e.g., Cohen’s
Kappa). Indeed, a slight variation in the tags used to represent the same concept would result in a false lack of
agreement (e.g., “remove of duplicates” v.s. “duplicate removal”). Despite the differences in the tags used, the
authors agreed on all the quality filters extracted. On the other hand, the two authors disagreed on 10 out of
71 data smells extracted from the quality filters. In the end, we successfully resolved such conflicts through
open discussion until a consensus was reached. Another threat could be related to the design of the query we
used to search for articles in the digital libraries. To limit this threat, we took inspiration from queries used in
previous literature reviews on similar topics [25, 130] and slightly adapted them to our purpose. Finally, we did
not consider papers published after August 2024. We acknowledge that several relevant works might have been
published in the meanwhile.

Threats to External Validity. In our literature review, we focused on papers published in Software Engineering
venues. It is possible, however, that relevant papers have been published in other venues related to Natural
Language Processing or Machine Learning/Artificial Intelligence. To limit such a threat, during snowballing, we
included several papers published in such venues. Besides, we only focused on the Transformer architecture.
We did this because it is, nowadays, the state-of-the-art for almost all the generative models tackling coding
tasks. There is a risk that papers that present approaches that rely on other models addressed additional relevant
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Pre-training

Pre-trained model Prefer a model pre-trained on natural language, technical language, and
source code (see Language Issues).

Additional pre-training If additional pre-training from scratch or additional pre-training needs
to be done, the pre-training dataset should not contain instances affected
by the relevant sub-categories of Language Issues, Limited Informative-
ness, Inadequate Source Repositories, Source Code Quality Issues.

Fine-tuning

Adequate Repositories Make sure that the instances come from source code repositories suffi-
ciently good (see Inadequate Source Repositories).

Context Adequacy Make sure that the instances have adequate context (see Lack of Context).
For example, in the API Recommendation task, it is important to provide
the model with sufficient API information.

Source CodeQuality Make sure that the source code has sufficient quality (see Source Code
Quality Issues).

Non-informative
Instances

Make sure that the source code is not outdated and that there is no
noise in the dataset (see Limited Informativeness).

Problematic Instances Make sure that no (near) duplicates appear in the dataset and that
the instances are not misleading (see (Near) Duplicate Instances and
Misleading Instances).

Data Distribution Check whether the dataset is affected by data imbalances or low
diversity-related issues (see Data Distribution Issues).

Evaluation

Test Representativeness Make sure that the test set allows to assess the different subtleties of
the real-world instances (see Data Distribution Issues).

Data Leakage Make sure that there is no data contamination between training and
test sets and that the chronological and project-related aspects are
adequately taken into account (see Data Leakage).

Table 7. Guidelines for practitioners to avoid data smells.

data smells that are not covered in this literature review. Still, several data smells we collected are generalizable
to different model architectures. The (Near) Duplicated Instances, Data Leakage, and Data Distribution Issues
categories arise from poor experimental design, making them quite independent from the model architecture
at hand. The same is true for Misleading Instances and Inadequate Source Repositories categories which derive
from poor data management during the collection phase. Furthermore, also the Lack of Context category extends
to other model architectures (i.e., RNN) as shown by Bansal et al. [12]. Nonetheless, others are not. The Data
Contamination sub-category and the Language Issues category might not be directly transferable to other model
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architectures, such as RNNs, that do not incorporate the “pre-train then finetune” paradigm. The same regards the
data smells involving comments and identifiers (i.e., Source Code Quality Issues and Limited Informativeness) when
removed or abstracted. For example, Tufano et al. [47] did that to overcome the out-of-vocabulary problem (OOV),
which RNNs are particularly sensitive to. To wrap up, while some of the data smell categories we collected are
generalizable to other model architectures, others are not directly extendible and may require tailored analysis.

7 CONCLUSIONS
We presented a systematic literature review aimed at acquiring information on the quality filters used in the
literature for LLMs for coding tasks. Our analysis resulted in a definition of a catalog of 71 data smells for coding
tasks and the related strategies adopted in the literature to remove them.

Our results call for future work on several aspects. First, it is necessary to establish the impact of data smells
(and, thus, of the related quality filters) on several aspects of the training (e.g., efficiency) and of the resulting
model (e.g., effectiveness). Second, the diffusion of data smells should be explored on state-of-the-art datasets to
understand their impact on the current research and practice. Third, researchers should try to improve LLMs for
specific coding tasks by adopting quality filters that are currently neglected for those tasks.
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A DATA SMELL CATEGORIES INDEX
We report in Table 8 the complete mapping between the root categories of our taxonomy and the papers in which
they have been tackled.

Dataset Smell Category Description References

Limited Informativeness Instances containing irrelevant or
non-contributive elements likely to
hinder model learning.

[57, 62–69, 71, 83, 86, 90, 92, 94, 97,
98, 100, 104, 106, 107, 111, 112, 122,
124, 127–130, 132, 135, 138, 142, 146,
149–151, 153, 156, 159, 160]

Data Leakage Overlap between training and evalu-
ation sets likely to mislead a correct
assessment.

[76, 77, 82, 87, 92, 94, 97, 102, 103, 123,
141, 148, 156, 158, 159]

Lack of Context Insufficient contextual information
likely to limit model capabilities.

[58, 59, 64, 72, 73, 78, 82, 85, 89, 94, 95,
99, 100, 106, 116–118, 121, 122, 125,
126, 128, 131, 134, 141, 147, 152, 155,
156, 160]

Data Distribution Issues Imbalanced distributions likely to
limit model generalizability.

[60, 80, 93, 96, 103, 107, 109, 111, 113–
115, 119, 120, 137, 144, 147, 157, 161]

(Near) Duplicated Instances Near or exact duplicates likely to lead
to overfitting and poor generalizabil-
ity.

[56–58, 65–69, 75, 81, 82, 86–88, 92,
93, 100–102, 104–110, 115, 118, 119,
121–125, 128–130, 132, 135, 137, 139,
146, 155, 156, 158]

Source Code Quality Issues Functional and non-functional code
issues likely to hinder model under-
standing.

[56, 57, 65, 67, 69, 70, 79, 82, 84, 91,
96, 100, 101, 104, 106, 115, 123, 124,
130, 132, 135, 136, 141–143, 145, 149,
150, 153, 156, 159]

Language Issues Natural and technical language mis-
alignments likely to limit model
transferability.

[55–58, 61, 74, 77, 82, 92, 112, 119,
124, 127–130, 133, 138, 140, 146, 149,
154, 156]

Inadequate Source Repositories Data collection from inappropriate
repositories likely to reduce model
effectiveness.

[64, 66–69, 75, 95, 97, 105, 106, 108,
110, 118, 127, 128, 138, 139, 149, 151]

Misleading Instances Confusing or incorrect signals likely
to hinder model learning.

[62, 65–68, 82–84, 90, 97, 101, 104–
108, 110, 111, 118, 125, 129, 132, 138,
139, 151]

Table 8. Data smell categories indexing.
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